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Abstract
This paper deals with the problem of Hopf bifurcation control for a class of
nonlinear time-delay systems. A dynamic delayed feedback control method
is utilized for stabilizing unstable fixed points near Hopf bifurcation. Using a
linear stability analysis, we show that under certain conditions of the control
parameters, and without changing the operating point of the system, the onset
of Hopf bifurcation is delayed. Meanwhile, by applying the center manifold
theorem and the normal form theory, we obtain formulas for determining
the direction of the Hopf bifurcation and the stability of bifurcating periodic
solutions of the closed loop system. Numerical simulations are given to justify
the validity of the analytical results for the system controlled by the proposed
method.

PACS numbers: 05.45.Gg, 02.30.Oz, 02.30.Ks, 02.30.Yy

1. Introduction

Time delays are an important source of performance degradation or instability in many real
phenomena and a great number of engineering problems, physical systems, chemical processes
and, more recently, Internet communications [1, 2]. The study of nonlinear delay differential
equations (NDDEs) has received much attention over the past years. In such systems, a
sequence of Hopf bifurcations may occur at the equilibrium point when a parameter of the
system reaches a critical value. This may be undesirable in many systems, and control
of bifurcation in order to avoid oscillations is thus an important issue. Bifurcation control
generally refers to the problem of modifying the bifurcation characteristics, thereby achieving
some dynamical behaviors. Some objectives of bifurcation control schemes include postponing
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the onset of the bifurcation, stabilizing an unstable bifurcating solution, changing the critical
points of an existing bifurcation and so on [3, 4].

The delayed feedback control (DFC) method has been used to control chaos and
bifurcation. DFC is well known as a method for stabilizing unstable periodic orbits (UPOs)
embedded in chaotic attractors. If the delay time coincides with the period of an unstable
periodic orbit, then the feedback vanishes on this orbit, see [5–9]. In addition, the DFC method
is capable of stabilizing unstable fixed points (UFPs) [10–13]. The stabilization of UFPs could
be more important when chaotic or periodic oscillations cause performance degradation. One
of the methods of controlling UFPs, proposed by Pyragas et al, uses the difference between the
current state and a low-pass-filtered version [10]. A DFC scheme in a diagonal coupling form
has been analytically investigated using the Lambert function for the purpose of stabilizing
the UFP [11, 12]. In addition, Choe et al have proposed two delay-coupled normal forms for
Hopf bifurcations for stabilizing both UPOs and UFPs [13]. It has been shown that the DFC
method is very successful in stabilizing UPOs but is less efficient in controlling UFPs in terms
of stability and flexibility, especially when used for the stabilization of UFPs with large delay
times due to unavoidable system dead times [14].

For many years, it was believed that the DFC method had some limitations for systems
whose linearization possesses an odd number of real positive eigenvalues, and it was therefore
thought that it could not be used to stabilize highly unstable systems [15–17]. In light of this,
some methods were proposed to overcome this limitation. For example, it was shown that
the odd number limitation of the DFC method could be overcome by including an additional
unstable mode in the feedback loop [18]. Recently, it has been demonstrated that this so-called
odd number limitation does not hold true for autonomous systems controlled by DFC [19, 20].
However, it does still hold true for stabilizing UFPs [21]. Moreover, if the Jacobian matrix
at a UFP has a characteristic exponent with a zero real part, the UFP cannot be stabilized by
linear DFC with arbitrary delayed time [22]. As a result, DFC can be used to stabilize only a
class of unstable systems [17]. In addition, there is a finite range of values of feedback gain
at which the control can be achieved [23].

The DFC method has also been used to control time-delay systems [9, 24–28].
We propose a dynamic delayed feedback control (DDFC) method based on a washout filter
[16] in order to control UFPs at the Hopf bifurcation point. A washout filter is a high-
pass filter that rejects steady-state inputs, while passing transient inputs. The method allows
for a noninvasive stabilization of UFPs for time-delay systems, i.e. it has the advantage of
not changing the location of the equilibrium point of the open-loop system and thereby,
stabilization is achieved by a small control energy. The so-called odd number limitation of
the DFC method for the case of UFP stabilization can be overcome by using the proposed
method, and therefore the stabilization of a much larger class of systems will be possible. We
also obtain deeper analytical insight into the DDFC by discussing the stability domain in the
space of the control parameters. In comparison with DFC, the efficiency of the control can be
improved, since the regions in the parameter space in which the fixed point is stabilized can
be extended and the range of values of the feedback gain can be increased.

The center manifold theorem and normal form theory are useful tools for investigating
nonlinear dynamical systems and are often applied to control systems in order to consider
instability and bifurcation control [3, 29, 30]. Based on the closed form of the Hopf
bifurcation calculation in [31], we also derive formulas for determining the direction of
the Hopf bifurcation and the stability of the bifurcating periodic solutions of the closed loop
system.

As an application, we concentrate on an Internet congestion control system that is modeled
by NDDEs [32–34]. The basic aim of the Internet congestion control system is to adjust the
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sending rates of source hosts in order to avoid congestion at links. It has been shown that
this system exhibits Hopf bifurcation when a system parameter varies [35–40]. This leads to
undesirable oscillations in the transmission rates of sources, which causes underutilization of
links and thereby, a significant degradation in network performance. There are some works
dealing with delayed feedback control of Hopf bifurcations [41–43] in this system. The aim
of bifurcation control schemes in the congestion control system is to absorb oscillations in
order to provide an improvement in network performance. We study the control of Hopf
bifurcation using the DDFC method for a rate-based Kelly’s model of an Internet congestion
control system [32]. Simulation results for a typical scenario demonstrate the applicability of
the method.

The paper is organized as follows. In section 2, we consider a Hopf bifurcation analysis
for the closed loop system. The properties of Hopf bifurcation is studied in section 3. In
order to verify the analytical results, the simulation results are presented in section 4. Finally,
conclusions are drawn in section 5.

2. Hopf bifurcation analysis

2.1. The model

In this paper, we consider a class of time-delay systems described by a first-order equation of
the form

ẋ(t) = f (x(t − τ)) , (1)

where x(t) ∈ � is the state variable, τ is a positive delay parameter and f (·) is a nonlinear
continuously differentiable function. We assume that there exists an equilibrium point x∗ �= 0
such that b = f ′(x∗) < 0.

By simple calculations, one can find that for τc = −π/2f ′(x∗), a Hopf bifurcation occurs
at the equilibrium x∗ of the system (1). Our goal is to change this critical value in order to
delay the Hopf bifurcation occurrence, and thereby drive the system toward desirable behavior.
A famous approach that achieves the same goal is DFC with the following control structure:

ẋ(t) = f (x(t − τ)) + a[x(t) − x(t − τ)]. (2)

For a>b/2, it undergoes a Hopf bifurcation at τc1 = 1
ω0

cos−1
(

a
a−b

)
, where ω0 =√

(b − a)2 − a2. Since τc1 > τc, the DFC can delay the Hopf bifurcation for a ∈ (b/2, 0).
In this paper, we improve some dynamical properties of the DFC method, such as the

domain of stability in parameter space. We propose a dynamic compensation for a general
model of time-delay systems in order to control Hopf bifurcation with a minimum control
effort. In order to improve the DFC method, we add a dynamic feedback to the system
controlled by DFC. Thus, we have the following control system:

ẋ(t) = f (x(t − τ)) + a[x(t) − x(t − τ)] + u(t)

u̇(t) = a[x(t) − x(t − τ)] − du(t),
(3)

where u(t) is the control law, a and d are the control parameters and the function f (·) satisfies
the same conditions assumed for (1). We also assume that d is a positive parameter.

Using Taylor expansion and letting y1(t) = x(t) − x∗ and y2(t) = u(t), we can expand
the right-hand side of equation (3) around x∗, resulting in the following equation:

ẏ1(t) = ay1(t) + (b − a)y1(t − τ) + y2(t) + 1
2b2y

2
1(t − τ) + 1

6b3y
3
1(t − τ) + O

(
y4

1(t − τ)
)

ẏ2(t) = ay1(t) − ay1(t − τ) − dy2(t),
(4)

3



J. Phys. A: Math. Theor. 42 (2009) 395102 B Rezaie et al

where b = f ′(x∗) < 0, b2 = f ′′(x∗) and b3 = f ′′′(x∗). The characteristic equation is

Q(λ, τ) := det

(
λ − b e−λτ − a(1 − e−λτ ) −1
−a(1 − e−λτ ) λ + d

)
= λ2 + [(d − a) − (b − a) e−λτ ]λ − a(d + 1) + [a(d + 1) − bd] e−λτ . (5)

Considering τ as the bifurcation parameter and using the distribution of the roots of
the characteristic equation (5), we determine some restrictions on the system and control
parameters under which the Hopf bifurcation occurs. We study the application of the Hopf
bifurcation theorem for the closed loop system (3) by the following theorem.

Theorem 1. If the control parameters a and d satisfy bd[2a(d + 1) − bd] < 0, then we have
the following.

(i) Equation (5) exhibits a Hopf bifurcation for τ = τ0, where

τj = 1

ω0
cos−1

[
a(a − b + 1)ω2

0 + a(d + 1)[a(d + 1) − bd]

(b − a)2ω2
0 + [a(d + 1) − bd]2

]

+
2jπ

ω0
, for j = 0, 1, . . .

and ω0 =
√

2
2 (A +

√
A2 − 4B)1/2 for A = b2−d2−2a(b+1) and B = bd[2a(d+1)−bd].

(ii) For τ < τ0, all roots of (5) have strictly negative real parts.

Proof. The proof is provided in appendix A. �

Therefore, the closed loop system undergoes Hopf bifurcation when the delay parameter
passes through a critical value τ0. It is not difficult to show that τ0 > τc, i.e. that the controller
postpones the Hopf bifurcation occurrence.

We now investigate the range of the control parameters for which Hopf bifurcation may
occur. Consider a two-dimensional space of parameters in the (a, d)-plane in order to show
the domain of stability of the fixed point for the closed loop system. In figure 1, inside the
gray region, the fixed point is stable and no oscillations occur. In the unstable area, there is
a critical value τ0 for which the Hopf bifurcation occurs. The boundary of the stable region
satisfies 2a(d + 1) − bd = 0. In addition, the area to the left of the dashed line at a = b/2
represents the stability domain for the system controlled by the DFC method. Therefore, the
stable area has increased using the proposed DDFC method.

Now, consider the following corollary.

Corollary 1. If a(d + 1) = bd, a < 0 and d > −b > 0, then the closed loop system (3) is
locally asymptotically stable.

Proof. Consider characteristic equation (5). For τ = 0, the closed loop system is locally
asymptotically stable (see appendix A). For τ �= 0, assuming λ = ±i ω with ω > 0, we obtain

Q(i ω, τ) = [−ω2 − (b − a)ω sin ωτ − bd] + i ω[(d − a) − (b − a) cos ωτ ].

Since a < 0, d > −b > 0 and a(d + 1) = bd, thus

im{Q(i ω, τ)} = ω[(d − a) − (b − a) cos(ωτ)] � ω(d + b) > 0,

and therefore we have Q(i ω, τ) �= 0. According to lemma (A.1), this proves that the
system (3) is locally asymptotically stable. �
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Figure 1. The stability domain of the closed loop system in the (a, d)-plane.

Corollary 1 gives the condition on the controller parameters under which the Hopf bifurcation
is avoided for all values of the delay parameter.

Remark 1. To utilize the proposed method in this paper for stabilizing UPOs, we can use
the following controller:

ẋ(t) = f (x(t − τ)) + a[x(t) − x(t − T )] + u(t)

u̇(t) = a[x(t) − x(t − T )] − du(t).
(6)

We use the fact that the period of the periodic orbits (stable or unstable) originating at the
bifurcation critical value τ = τ0 is 2π/ω0. Thus, we must set T = 2π/ω0. Furthermore,
we set d = −b e−ω0τ0 . Consequently, λ = i ω0 is a root of (5) as well as the characteristic
equation of the open loop system. Thus, we propose to choose such a T as to stabilize
the UPO. Hence, for such a T , τ = τ0 is a Hopf bifurcation critical value for (6), and
the stability of the periodic solution arising from this Hopf bifurcation is dependent on a.
Accordingly, by a suitable choice of a, the UPO may become stable. It is easy to verify that
if λ(τ, T , d) = α(τ, T , d) + i ω(τ, T , d) denotes a root of (5) near τ = τ0, T = 2π/ω0 and
d = −b e−ω0τ0 , then

∂α(τ0, 2π/ω0,−b e−ω0τ0)

∂τ
�= 0,

∂α(τ0, 2π/ω0,−b e−ω0τ0)

∂T
�= 0,

∂α(τ0, 2π/ω0,−b e−ω0τ0)

∂d
�= 0.

Therefore, the system (6) undergoes Hopf bifurcation at the equilibrium point x∗, when
τ = τ0, T = 2π/ω0 and d = −b e−ω0τ0 . Note that we must choose a such that for τ = τ0,
T = 2π/ω0 and d = −b e−ω0τ0 , all roots of (5) except for ±i ω0 have negative real parts, and
the corresponding periodic solution becomes stable.

2.2. Application

The interest in studying the system (1) is justified by the fact that it includes many models
that have been intensively and extensively studied in the literature. In order to illustrate the
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effectiveness of the proposed control method, we concentrate on an application of the model
(1) in a simplified fluid approximation of an Internet congestion control proposed by Kelly
[33]. The model is described by the following equation:

ẋ(t) = κ[w − x(t − τ)p(x(t − τ))], (7)

where x ∈ � is the state variable, κ,w, τ > 0 are the system parameters and p(·) is a positive
and strictly increasing function. It has been shown that such delayed systems exhibit Hopf
bifurcation when the nonlinear function satisfies a particular set of conditions [35, 37, 41, 42].
Note that the positive equilibrium of the system (7) is x∗, which satisfies x∗p(x∗) = w. The
parameter b for this system is defined by

b = f ′(x∗) = −κ[p(x∗) + x∗p′(x∗)] < 0.

Equation (7) has been used for a data network that consists of a source with a transmission
rate x(t) and that utilizes a single link. The link as the resource of the network charges a
price per unit p(x), where p(·) is a function of the rate going through the link. The price of
the resource may depend on link congestion, loss probability, etc. Due to link propagation,
there is a reverse delay τ of the feedback signal from the resource to the user. In addition, κ

is the gain parameter, and w is the willingness to pay. Each user/source adjusts its rate based
on the feedback provided by the resource/link in the network to equalize its willingness to
pay and the price of the link.

We now illustrate how the control parameters of the DDFC method influence the critical
value of delay for the system (7). The bifurcation point τ0 in the DFC method depends on
the control parameter a. In the DDFC method, it depends on the control parameters a and
d. Figure 2 shows the stability boundaries by comparing the curves τ0(a) as parameter a is
varied. One can observe that for each fixed value of d, by decreasing the control parameter
a toward −∞, the critical value of delay has been increased using the proposed method and
therefore the Hopf bifurcation has been postponed. This means that those points which were
unstable in the system controlled by the DFC method are now stable as they are moved by the
control action to the area below the new stability boundary. Furthermore, it is possible to raise
the stability boundary by decreasing the parameter d for each fixed value of a.

To provide insight into how the proposed control method works, let us consider the
problem of stabilizing the fixed point of (3). The characteristic equation reads

1 − aG(λ) = 0,

where G(λ) = (λ+d+1)(1−e−λτ )

(λ+d)(λ−b e−λτ )
. For the DFC method, we have G(λ) = 1−e−λτ

λ−b e−λτ . Therefore, we
have added a pair of stable pole and zero to the DFC method, which increases the stability
region of the closed loop system. To compare these methods, we illustrate the effect of the
parameter a on the stability of the system in two methods. For DFC method, this can be seen
in the root loci in figure 3(a) as the parameter a varies from 0 to −∞. For a = 0, there are two
eigenvalues with positive real part. This means that the controlled system is unstable. With
the decrease of a toward −∞, the largest eigenvalue approaches the imaginary axis at a =
−0.64. For a < −0.64, the closed loop system is stable. The corresponding stability domain
is shown in figure 3(b).

For the proposed method, the corresponding results are shown in figure 4. It is clearly
seen that for a < −0.46, the closed loop system is stable. Therefore, the region of the control
parameter a ensuring the stability of the closed loop system has increased.

In addition, the largest real parts of the complex eigenvalues λ as a function of the delay
parameter τ are shown in figures 5 and 6. Comparing the domains of control in figures 5
and 6(a), it can be seen that for each fixed value of a, the fixed point of the proposed DDFC
method can stabilize the system in a larger range of τ . In addition, figure 6(b) shows that

6
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Figure 2. The curves τ0 (a) for the closed loop system with b = −1.63.

(a) (b)

Figure 3. (a) Root loci of the closed loop system controlled by the DFC method. (b) Re(λ) versus
a for b = −1.63 and τ = 3.

by decreasing the control parameter d, the real part of the leading eigenvalue becomes more
negative.

3. Direction and stability of Hopf bifurcation

The direction of the Hopf bifurcation and the stability and period of the periodic solution
bifurcating from the equilibrium, as stated in [31], are interesting issues. In this section, based
on the normal form method and the center manifold theorem introduced by Hassard et al [31],
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(a) (b)

Figure 4. (a) Root loci of the closed loop system for the DDFC method. (b) Re(λ) versus a.
Parameters: b = −1.63, d = 2 and τ = 3.

Figure 5. The largest Re(λ) versus τ for the DFC method with b = −1.63.

we will determine the Hopf bifurcation properties of the system (3) at the critical value τ0.
According to the center manifold theorem, near the equilibrium point, there is a family of
smooth invariant manifolds preserving the inherited dynamics of the original systems. Hence,
we can use the normal form to analytically describe the bifurcation.

To determine the Hopf bifurcation, it is important to obtain the normal form first, and
then determine the signs of its parameters. The normal form can be found using the center
manifold reduction as the key component of the Hopf bifurcation calculations (see appendix B
for details). The dynamics of the system (3) is topologically equivalent to the following
equation at the sufficiently small neighborhood of the Hopf bifurcation point:

ż = i ω0z + g(z, z̄) = i ω0z + g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · , (8)
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(a) (b)

Figure 6. The largest Re(λ) versus τ for the DDFC method with b = −1.63, (a) for different
values of a with d = 2, (b) for different values of d with a = −0.5.

where z and z̄ are the local coordinates for the center manifold. The values of g20, g11, g02 and
g21 are computed according to the formulas derived in appendix B. Thus, we can calculate all
of the following quantities which are required for the stability analysis of Hopf bifurcation:

C1(0) = i

2ω0

(
g20g11 − 2 |g11|2 − 1

3
|g02|2

)
+

g21

2

μ2 = −Re{c1(0)}
Reλ′(0)

τ2 = − Im{C1(0)} + μ2Imλ′(0)

ω0

β2 = 2 Re{C1(0)}.

(9)

The periodic solutions and their stabilities can be analyzed with the aid of the normal form
parameters C1(0), μ2, β2 and τ2. Using the result of [31], we state the conditions for the
stability analysis of Hopf bifurcation by the following theorem.

Theorem 2. Let C1(0), μ2, β2 and τ2 be given in (9) as calculated in appendix B. Then,

(i) the bifurcation solutions exist for τ = τ0: if μ2 > 0, then the bifurcation is supercritical,
and if μ2 < 0, then the bifurcation is subcritical;

(ii) β2 determines the stability of the bifurcating periodic solutions: the solutions are orbitally
stable if β2 < 0 and unstable if β2 > 0; and

(iii) τ2 determines the period of the bifurcating periodic solutions: the period increases if
τ2 > 0 and decreases if τ2 < 0.

Note that the period of the bifurcation solution can be determined by

T̃ (h) = 2π

ω0
(1 + h2τ2 + · · ·).

For τ = τ0 (or equivalently, h = 0), the period of the closed loop system will be T̃ = 2π/ω0.
In addition, by determining the normal form, we are able to calculate the amplitude of the
bifurcating orbits at τ = τ0.

9
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Figure 7. Domain of Hopf bifurcation stability in the (a, d)-plane. The shaded area indicates
combinations of a and d, for which the Hopf bifurcation is supercritical (μ2 > 0). The curves show
the ranges of control parameters while the delay is fixed at critical values τ0 = 1.1 and τ0 = 1.2.

We now investigate the effects of the control parameters on the normal form parameters
for the model (7) controlled by the proposed method. Suppose that the conditions of the
Hopf bifurcation occurrence hold and the model has a periodic solution. We also assume that
b = −1.6361, b2 = −0.1264 and b3 = 0.1069. Figure 7 shows the stability domain of the
periodic orbit in the plane of control parameters (a, d). In addition, the curves d(a) are shown
in figure 7 for two different values of τ0. One can see that using the proposed control method
the stability of periodic solution is affected in such a way that the Hopf bifurcation can be
changed from subcritical to supercritical as the control parameters change.

Therefore, an appropriate choice of the control parameters can stabilize the periodic orbit
without changing the operating point and the critical value of delay. This suggests that the
proposed method can perform as an efficient method for stabilization of the solution at Hopf
bifurcation, and a transition from subcritical Hopf bifurcation to supercritical Hopf bifurcation
will be possible.

4. Simulations

In this section, numerical results are presented for an example used in [37], which is a
proportionally fair congestion control system (7) for a simple network including a single
source that uses a single link. Let the target parameter be ω = 1 and the gain parameter be
κ = 3/2. In addition, consider the link to utilize a random early marking (REM) mechanism
[44] as a price function with the same parameters in [37]. The REM mechanism marks a
packet with drop probability p(x) = 1 − e−x per unit of flow rate. Therefore, the congestion
control system takes the following form:

ẋ(t) = 3
2

[
1 − x(t − τ) + x(t − τ) ex(t−τ)

]
. (10)

First, consider the open loop system (10) and let the delay parameter be the bifurcation
parameter. The equilibrium point of (10) is x∗ = 1.35. Figure 8 shows the simulation results

10
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Figure 8. Waveform plot and phase portrait of an uncontrolled system with τ = 1.

for the open loop system with τ = 1. We can see that the system is not stable and that there
exists a Hopf bifurcation. In addition, as in [37], we have

τc = 0.9601, ω0 = 1.6361

and

D2 = 0.0526, ω2 = −0.909, η2 = −0.0318.

The parameters D2, ω2 and η2 are defined in [37]. The system loses its stability when the
delay passes through the critical value τc, and Hopf bifurcation occurs. Since D2 > 0, the
bifurcation is supercritical, and because η2 < 0, the periodic orbits are locally asymptotically
stable. Furthermore, since ω2 > 0, the periodic solutions increase as τ increases.

Now, we apply the proposed DDFC method to the system (10) in order to delay the Hopf
bifurcation. We consider the closed loop system (3) with initial condition x0 = 1 and control
parameters a = −0.5 and d = 5. Therefore, we have

τ0 = 2.3054, ω0 = 0.8673

and

μ2 = 0.6839, τ2 = 0.3490, β2 = −0.1345.

Thus, the critical value for Hopf bifurcation increases from 0.9601 to 2.3054, implying that
the onset of the Hopf bifurcation is postponed. In addition, since μ2 > 0, the bifurcation is
supercritical and, because τ2 > 0, the periodic solutions increase as τ increases. Furthermore,
the periodic orbit is stable since β2 < 0. Figures 9 and 10 show the simulation results for
τ = 1.5 and τ = 2.5. We can observe that the system is locally asymptotically stable when
τ < τ0 and that is not stable when τ > τ0. It is obvious that for τ < τ0 the controlled
system converges to the same equilibrium point as the original system. Furthermore, there is
no control signal when the rate signal converges to its final value.

The parameters a and d can be used to tune the onset of the Hopf bifurcation or the Hopf
bifurcation properties defined by parameters μ2, τ2 and β2. Using different values of a and d,
one can efficiently delay the onset of the Hopf bifurcation or change the stability, direction and
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Figure 9. Waveform plot, control signal and phase portrait of a closed loop system with τ = 1.5,
a = −0.5 and d = 5.

Figure 10. Waveform plot, control signal and phase portrait of a closed loop system with τ = 2.5,
a = −0.5 and d = 5.

period of the Hopf bifurcation. In addition, by appropriately selecting the control parameters,
the bifurcation can be avoided for all values of the delay parameter. Let the control parameters
be a = −1.09 and d = 2. Figures 11 and 12 show the stability of the system for τ = 2.5
and τ = 10, and testify the theoretical results in corollary 1. It can be shown that with this
controller, the system is locally asymptotically stable for all values of τ which implies that the
controlled system is robust against delay variations.

We now study the behavior of the closed loop system for a different initial condition
but close to the fixed point. Figure 13 shows that the control mechanism is successful for
initial condition x0 = 4. However, the success of the control depends sensitively on the initial

12
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Figure 11. Waveform plot, control signal and phase portrait of a closed loop system with τ = 2.5,
a = −1.09 and d = 2.

Figure 12. Waveform plot, control signal and phase portrait of a closed loop system with τ = 10,
a = −1.09 and d = 2.

condition. When applying a linear method, control is obtained only for a small range of initial
conditions close to the fixed point. Starting from initial conditions outside this small range,
the controller variable may escape to infinity.

Finally, to investigate the robustness of the method against noise, we simulate the results
in the presence of white noise in the measure signal x(t). Figure 14 shows that white noise and
inaccuracy in the measurements affect the system response. This observation, in fact, shows
that the method may lose its accuracy in the presence of noise. However, the value of the
signal rate is still bounded.
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Figure 13. Waveform plot, control signal and phase portrait of closed loop system with τ = 1.5,
a = −0.5 and d = 5 with the initial condition x0 = 4.

Figure 14. Waveform plot, control signal and phase portrait of a closed loop system with τ = 1.5,
a = −0.5 and d = 5 in the presence of white noise in the measure signal x(t).

5. Conclusion

The Hopf bifurcation control problem was considered for a class of nonlinear time-delay
systems. A dynamic delayed feedback control method was proposed in order to retard the
Hopf bifurcation occurrence. The proposed method preserved the operating point of the
system, i.e. the control action vanished once stability was achieved. By choosing the delay
parameter as a bifurcation parameter and using linear stability analysis, we determined the
condition for Hopf bifurcation occurrence for the controlled system. We also applied a method

14
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based on the center manifold theorem and normal form theory to study the Hopf bifurcation
properties. By selecting appropriate control parameters, the proposed controller can effectively
postpone the onset of the Hopf bifurcation or change the properties of the Hopf bifurcation. An
application of the proposed control system in a model of an Internet congestion control system
was studied. Numerical simulations for a congestion control system in a simple network were
presented to justify the analytical results. The proposed control method may be extended in
order to study higher dimensional nonlinear time-delay systems.
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Appendix A. Proof of theorem 1

Hopf bifurcation occurrence requires that the characteristic equation (5) has a simple pair of
purely imaginary roots, and the eigenvalues cross the imaginary axis with a non-zero velocity
(transversality condition), i.e. Re

( dλ(τ0)

dτ

) �= 0, where τ0 > 0 is the critical value of τ .
We derive the condition for Hopf bifurcation occurrence by setting the real part of the roots

of the characteristic equation (5) equal to zero, i.e. λ = ±i ω0, where ω0 > 0. Substituting
this into (5), and separating real and imaginary parts of the resulting equation, we obtain the
solution of equation (5) as follows:

−(b − a)ω0 sin(ω0τ) + [a(d + 1) − bd] cos(ω0τ) = a(d + 1) + ω2
0

(b − a)ω0 cos(ω0τ) + [a(d + 1) − bd] sin(ω0τ) = (d − a)ω0

(A.1)

which leads to

ω4
0 + [2a(b + 1) + d2 − b2]ω2

0 + bd[2a(d + 1) − bd] = 0. (A.2)

It is easy to see that if the condition bd[2a(d + 1) − bd] < 0 holds, then equation (A.2) has
only one positive root as follows:

ω0 =
√

−[2a(b + 1) + d2 − b2] +
√

[2a(b + 1) + d2 − b2]2 − 4bd[2a(d + 1) − bd]

2
.

Thus, one can determine

τj = 1

ω0
cos−1

[
a(a − b + 1)ω2

0 + a(d + 1)[a(d + 1) − bd]

(b − a)2ω2
0 + [a(d + 1) − bd]2

]
+

2jπ

ω0
, for j = 0, 1, . . . ,

(A.3)

where the non-negative integer j takes care of the different leaves of the involved multivalued
function [46–48]. Therefore, the characteristic equation (5) with τ = τj {j = 0, 1, 2, . . .} has
a pair of imaginary roots λ = ±iω0, which are simple.

Now, applying the implicit function theorem, we obtain[
dλ(τ)

dτ

]−1

= [2λ + (d − a)] eλτ

λ[(a − b)λ + a(d + 1) − bd]
+

(a − b)

λ[(a − b)λ + a(d + 1) − bd]
− τ

λ
. (A.4)
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Since λ(τ0) = i ω0, we have

Re

{[
dλ(τ0)

dτ

]−1
}

= Re

{
[(d − a) cos(ω0τ0) − 2ω0 sin(ω0τ0)]

(b − a)ω2
0 + i ω0[a(d + 1) − bd]

}

+ Re

{
i[2ω0 cos(ω0τ0) + (d − a) sin(ω0τ0)]

(b − a)ω2
0 + i ω0[a(d + 1) − bd]

}

+ Re

{
(a − b)

(b − a)ω2
0 + i ω0[a(d + 1) − bd]

}
.

Defining � = ω2
0

{
(a − b)2ω2

0 + [a(d + 1) − bd]2
}
, we obtain

Re

{[
dλ(τ0)

dτ

]−1
}

= 1

�

{
(b − a)ω2

0[(d − a) cos(ω0τ0) − 2ω0 sin(ω0τ0)]

+ ω0[a(d + 1) − bd][2ω0 cos(ω0τ0) + (d − a) sin(ω0τ0)]
}

− (a − b)2ω2
0

= 1

�
(d − a)ω0{−(a − b)ω0 cos(ω0τ0) + [a(d + 1) − bd] sin(ω0τ0)}

+
1

�
2ω2

0{(a − b)ω0 sin(ω0τ0) + [a(d + 1) − bd] cos(ω0τ0)}

− 1

�
(a − b)2ω2

0

= 1

�

[
(d − a)2ω2

0 + 2ω4
0 + 2ω2

0a(d + 1) − (a − b)2ω2
0

]
.

Therefore,

Re

{[
dλ(τ0)

dτ

]−1
}

= ω2
0

�

[
2ω2

0 + d2 − b2 + 2a(b + 1)
]

= ω2
0

�

√
[2a(b + 1) + d2 − b2]2 − 4bd[2a(d + 1) − bd] > 0.

Now, we prove that for τ < τ0, all roots of (5) have strictly negative real parts. Consider the
following lemma:

Lemma A.1. [45] The equilibrium point of the system (3) is asymptotically stable if the real
parts of all eigenvalues of the characteristic equation Q(λ, τ) = 0 are rigorously negative
when τ = 0, and for arbitrary real number ω and τ ′ ∈ [0, τ ], Q(i ω, τ ′) �= 0 holds.

Using the above lemma, we show that the system is locally asymptotically stable. When
τ = 0, we can write Q(λ, 0) := λ2 + (d − b)λ − bd = 0. Since d > 0 and b < 0, there are no
roots on the imaginary axis when τ < τ0. Therefore, according to lemma A.1, when τ < τ0,
all roots of (5) have strictly negative real parts.

Now, we demonstrate that when τ = τ0, except for the pair of purely imaginary roots
λ = ±i ω0, all roots of (5) have strictly negative parts. We prove this by contradiction. If this
is not true, then there exists a pair of roots of (5) λ1,2 = α ± i ω0, where α > 0. Since the roots
are continuous on the parameter τ , for any sufficiently small positive number ε, there exists a
positive number δ such that |Re(λ1) − α| < ε, when τ ∈ (τ0 − δ, τ0 + δ). Let ε = α

2 , we have
Re(λ1) > α

2 when τ ∈ (τ0 − δ, τ0). This contradicts the stability of equilibrium forτ < τ0.
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Appendix B. Normal forms’ calculations

For convenience, let τ = τ0 + μ where μ ∈ �, and yt (θ) = y(t + θ) for θ ∈ [−τ, 0]. Then,
μ = 0 is the Hopf bifurcation value for the system (3). The system can be written as a
functional differential equation in C : C([−τ, 0],�2) as

ẏ(t) = Lμyt + F(yt , μ), (B.1)

where Lμ is a linear continuous operator from C to �2. For φ ∈ C,

Lμφ = B1φ(0) + B2φ(−τ), (B.2)

where

B1 =
(

a 1
a −d

)
, B2 =

(
b − a 0
−a 0

)
and b = f ′(x∗) < 0. In addition, F : C × � → �2 is

F(φ,μ) =
(

b2φ
2(−τ) + b3φ

3(−τ) + · · ·
0

)
, (B.3)

where b2 = 1
2f ′′(x∗), b3 = 1

6f ′′′(x∗), . . . .
By the Reisz representation theorem, for φ ∈ C, there exists a 2 × 2 matrix-valued

function η(θ, μ) of bounded variation for θ ∈ [−τ, 0], such that

Lμφ =
∫ 0

−τ

dη(θ, μ)φ(θ) dθ, (B.4)

where

η(θ, μ) =
{
Lμ(φ(−τ), μ)

0
θ = −τ

−τ < θ � 0,
(B.5)

which can be satisfied by

dη(θ, μ) = [B1δ(θ) + B2δ(θ + τ)] dθ, (B.6)

where δ(·) is the Dirac delta function. For φ ∈ C, we define

A(μ)φ =

⎧⎪⎪⎨
⎪⎪⎩

dφ

dθ∫ 0

−τ

dη(θ, μ)φ(θ) dθ = Lμφ

θ ∈ [−τ, 0)

θ = 0
(B.7)

and

R(μ)φ =
{

0
F(φ,μ)

θ ∈ [−τ, 0)

θ = 0
. (B.8)

Since dyt

dθ
= dyt

dt
, we can write (B.1) as the following ordinary differential equation as desired:

ẏt = A(μ)yt + R(μ)yt . (B.9)

For ψ ∈ C1 := C([0, τ ],�2), we define

L∗
μψ =

∫ 0

−τ

dηT (−s, μ)ψ(−s)d(−s). (B.10)

The adjoint operator A∗ of A is expressed as

A∗(μ)ψ =

⎧⎪⎪⎨
⎪⎪⎩

−dψ

ds∫ 0

−τ

dηT (−s, μ)ψ(−s)d(−s) = L∗
μψ

s ∈ (0, τ ]
s = 0

. (B.11)
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We define the following bilinear inner product in C × C1 for φ ∈ C and ψ ∈ C1:

〈ψ, φ〉 = 〈ψ̄T (0), φ(0)〉 −
∫ 0

θ=−τ

∫ θ

ξ=0
ψ̄T (ξ − θ) dη(θ, μ)φ(ξ) dξ . (B.12)

We know that λ = ±i ω0 are the eigenvalues of A and A∗. Let q(θ) and q∗(θ) be the
eigenvectors of A and A∗ associated with eigenvalues iω0 and −iω0, respectively. These
eigenvectors satisfy

A(0)q(θ) = i ω0q(θ)

A(0)q∗(θ) = −i ω0q
∗(θ).

(B.13)

Let q(θ) = q(0) ei ω0θ = (1, ρ1)
T ei ω0θ where ρ1 is a complex value. For θ = 0 and from

(B.7) and (B.13), we have⎧⎨
⎩

dq(θ)

dθ
= i ω0q(θ)

Lμ(0)q(0) = i ω0q(0)

θ ∈ [−τ, 0)

θ = 0
. (B.14)

Therefore, from (B.2) and (B.14), we obtain

(B1 − i ω0I + B2 e−i ω0τ )q(0) = 0. (B.15)

Thus,

ρ1 = a(b − i ω0)

(b − a)d − a + i(b − a)ω0
. (B.16)

Similarly, let q∗(θ) = q∗(0) ei ω0s = D(ρ2, 1)T ei ω0s , where ρ2 and D are complex values.
From (B.10) and (B.13), we have⎧⎨

⎩−dq∗(s)
ds

= −i ω0q
∗(θ)

−L∗
μ(0)q∗(0) = −i ω0q

∗(0)

s ∈ [0, τ )

s = 0
. (B.17)

From (B.10) and (B.17), we can obtain(
BT

1 + i ω0I + BT
2 e−i ω0τ

)
q∗(0) = 0. (B.18)

Therefore, we can choose

ρ2 = (d − i ω0). (B.19)

We can calculate 〈q∗, q〉 as follows:

〈q∗, q〉 = q̄∗ T (0)q(0) −
∫ 0

θ=−τ

∫ θ

ξ=0
q̄∗ T (ξ − θ) dη(θ)q(ξ) dξ

= D̄(ρ1 + ρ̄2) −
∫ 0

θ=−τ

∫ θ

ξ=0
q̄∗ T (0) e−i ω0(ξ−θ) dη(θ)q(0) ei ω0ξ dξ dθ

= D̄(ρ1 + ρ̄2) −
∫ 0

θ=−τ

q̄∗ T (0) dη(θ)θq(0) ei ω0θ dθ

= D̄(ρ1 + ρ̄2) − D̄τ e−i ω0τ
[
ρ̄2 1

]
B2

[
1
ρ1

]
= D̄{(ρ1 + ρ̄2) − τ [(b − a)ρ̄2 − a]}.

Using D̄ = 1/{(ρ1 + ρ̄2) − τ [(b − a)ρ̄2 − a]}, we have

〈q∗, q〉 = 1. (B.20)
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In addition, since 〈ψ,Aφ〉 = 〈A∗ψ, φ〉, we obtain

−i ω0〈q∗, q̄〉 = 〈q∗, Aq̄〉 = 〈A∗q∗, q̄〉 = 〈−i ω0q∗, q̄〉 = i ω0〈q∗, q̄〉.
Therefore,

〈q∗, q̄〉 = 0. (B.21)

Now, we apply the idea of Hassard et al [31] to compute the coordinates to describe the center
manifold at the critical point. For yt , a solution of (B.9) at μ = 0, we define

z = 〈q∗, yt 〉 W(t, θ) = yt − zq − z̄q̄ = yt − 2 Re{z(t)q(θ)}, (B.22)

where z and z̄ are the local coordinates for the center manifold in the direction of q∗ and ¯̂q.
Note that W is real if yt is real. We consider only real solutions. From (B.12), we obtain

〈q∗,W 〉 = 〈q∗, yt − zq − z̄q̄〉
= 〈q∗, yt 〉 − z(t)〈q∗, q〉 − z̄(t)〈q∗, q̄〉 = 0. (B.23)

Therefore, for the solution of (B.9), from (B.7), (B.8) and (B.12), since μ = 0, we can write(
ż

Ẇ

)
=

(
i ω0 0
0 A

) (
z

W

)
+ .

(
g(z, z̄)

H(z,
⇀

z)

)
, (B.24)

where

f0(z, z̄) := F(W + zq + z̄q̄) g(z, z̄) := q̄∗ T (0)f0(z, z̄)

H(z, z̄) :=
{−q∗ T (0)f0(z, z̄) − q∗ T (0)f0(z, z̄)

f0(z, z̄) − q̄∗ T (0)f0(z, z̄) − q∗ T (0)f0(z, z̄)

if θ ∈ [−τ, 0)

if θ = 0
.

(B.25)

By the Taylor expansion of the analytic function F in (B.1), we have

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · ·

H(z, z̄) = H20
z2

2
+ H11zz̄ + H02

z̄2

2
+ · · ·

W(z, z̄, θ) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ · · · .

(B.26)

We need to compute the values of g20, g11, g02 and g21. From (B.25), we have

g(z, z̄) = q̄∗ T (0)f0(z, z̄) = D̄(ρ̄2, 1)T
(

b2φ1(−τ)2 + b3φ1(−τ)3

0

)
, (B.27)

where

φ1(−τ)2 = z2 e−i2ω0τ + 2zz̄ + z̄2 ei2ω0τ + z2z̄
(
W

(1)
20 ei ω0τ + 2W

(1)
11 e−i ω0τ

)
+ · · ·

φ1(−τ)3 = 3z2z̄ e−i ω0τ + · · · .
(B.28)

Thus, we obtain

g20 = 2D̄ρ̄2b2 e−i2ω0τ

g11 = 2D̄ρ̄2b2

g02 = 2D̄ρ̄2b2 ei2ω0τ

g21 = 2D̄ρ̄2
(
b2W

(1)
20 (−τ) ei ω0τ + 2b2W

(1)
11 (−τ) e−i ω0τ + 3b3 e−i ω0τ

)
.

(B.29)
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In order to determine g21, we still need to compute W20(−τ) and W11(−τ). Now, for
θ ∈ [−τ, 0),

H(z, z̄, θ) = −2 Re{q̄∗ T (0)f0(z, z̄)q(θ)}
= −2 Re{g(z, z̄)q(θ)}
= −g(z, z̄)q(θ) − ḡ(z, z̄)q̄(θ)

= −
(

g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · ·

)
q(θ)

−
(

ḡ20
z2

2
+ ḡ11zz̄ + ḡ02

z̄2

2
+ ḡ21

z2z̄

2
+ · · ·

)
q̄(θ).

When compared with H(z, z̄, θ) in (B.26), we obtain

H20(θ) = −g20q(θ) − ḡ02q̄(θ)

H11(θ) = −g11q(θ) − ḡ11q̄(θ).
(B.30)

By calculating the derivative of W in (B.26), we find

Ẇ (θ) = Wzż + Wz̄ ˙̄z

= i2ω0W20(θ)z2 + i ω0W11(θ)zz̄ − i2ω0W02(θ)z̄2 − i ω0W11(θ)zz̄ + · · · . (B.31)

By comparing the coefficients of z2, zz̄ and z̄2 of (B.31) with those of (B.24), we find

(A − i2ω0I )W20(θ) = −H20(θ)

AW11(θ) = −H11(θ)

(A + i2ω0I )W02(θ) = −H02(θ).

(B.32)

It follows from (B.7) and (B.32) that for θ ∈ [−τ, 0),(
Ẇ20(θ)

Ẇ11(θ)

)
=

(
AW20(θ)

AW11(θ)

)
=

(
i2ω0IW20(θ) − H20(θ)

−H11(θ)

)

=
(

i2ω0IW 20(θ) + g20q(θ) + ḡ20q̄(θ)

g11q(θ) + ḡ11q̄(θ)

)

=
(

i2ω0IW 20(θ) + g20q(0) ei ω0θ + ḡ20q̄(0) e−i ω0θ

g20q(0) ei ω0θ + ḡ20q̄(0) e−i ω0θ

)
. (B.33)

Solving (B.33), we obtain

(
W20(θ)

W11(θ)

)
=

⎛
⎜⎝

ig20

ω0
q(0) ei ω0θ +

iḡ20

3ω0
q̄(0) e−i ω0θ + E1 ei2ω0θ

− ig11

ω0
q(0) ei ω0θ +

iḡ11

ω0
q̄(0) e−i ω0θ + E2

⎞
⎟⎠ . (B.34)

In addition, for θ = 0, we have

H(z, z̄, θ) = −2 Re{q̄∗ T (0)f0(z, z̄)q(θ)} + f0(z, z̄)

= −g(z, z̄)q(θ) − ḡ(z, z̄)q̄(θ) + f0(z, z̄)

= −
(

g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · ·

)
q(θ)

−
(

ḡ20
z2

2
+ ḡ11zz̄ + ḡ02

z̄2

2
+ ḡ21

z2z̄

2
+ · · ·

)
q̄(θ)

+ f0(z, z̄). (B.35)

20



J. Phys. A: Math. Theor. 42 (2009) 395102 B Rezaie et al

Hence,

H20(0) = −g20q(0) − ḡ02q̄(0) + K1

H11(0) = −g11q(0) − ḡ11q̄(0) + K2,
(B.36)

where

K1 =
(

2b2 e−i2ω0τ

0

)
, K2 =

(
2b2

0

)
. (B.37)

From the definition of A in (B.7) and (B.32), we have∫ 0

−τ

dη(θ)W20(θ) dθ = i2ω0W20(0) − H20(0)∫ 0

−τ

dη(θ)W11(θ) dθ = −H11(0).

(B.38)

Substituting (B.34) and (B.36) into (B.38) and noting that(
i ω0I −

∫ 0

−τ

dη(θ) ei ω0τ dθ

)
q(0) = 0(

−i ω0I −
∫ 0

−τ

dη(θ) e−i ω0τ dθ

)
q̄(0) = 0,

(B.39)

we obtain ⎛
⎜⎜⎝

(
i2ω0I −

∫ 0

−τ

dη(θ) ei2ω0τ dθ

)
E1(∫ 0

−τ

dη(θ) dθ

)
E2

⎞
⎟⎟⎠ =

(
K1

−K2

)
(B.40)

or ((
i2ω0I − (B1 + B2 e−i2ω0τ )

)
E1

(B1 + B2 e−i2ω0τ )E2

)
=

(
K1

−K2

)
. (B.41)

Thus, the normal form parameters of (9) can be calculated.
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